I put Aristotle’s ‘space’ in brackets, for it stands for topos, which means ‘place’. The Greek-English Lexicon of Liddell and
Scott registers a wide range of meanings for topos, such as ‘place’, ‘region’, ‘district’; ‘place or part of the
body’, esp. ho topos (i.e. topos qualified by a definite article) pudendum muliebre; ‘place, passage in an
author’ – ‘space’ does not figure among
these. And yet, what we mean by ‘space’ is discussed by Aristotle as topos; he opens the 4th book
of his Physics as follows: “The
physicist (ton phusicon) must have a
knowledge (anankê
gnȏrizein) of Place (peri topou), whether there is such a
thing or not (ei estin ê mê),
and the manner of its existence (kai pȏs esti) and what it is (kai ti esti), both because all suppose
that things which exist are somewhere (ta
te gar onta pantes hupolambanousin einai pou) and because ‘motion’ (kai tês
kinêseȏs)
in its most general and primary sense (hê koinê
malista kai kuriȏtatê) is change of place (kata topon esti), which we call
‘locomotion’ (hên
kaloumen phoran).” (Ar. Physics,
208a27-32; tr. by R.P. Hardie and R. K. Gaye; I shall use their translation in
this entry; by using the capital P when introducing the topic of ‘place’, the
translators appear to be expressing their unease concerning ‘place’ standing
for Aristotle’s topos.)
Aristotle says that the question ‘what is place?’ presents
many difficulties (echei pollas aporias),
for it does not appear to be the same thing (ou gar t’auton phainetai) to those who examine (theȏrousin)
the relevant facts concerning it (ex
hapantȏn tȏn
huparchontȏn). Aristotle notes that
he is the first to investigate this concept: ‘We have inherited nothing from
previous thinkers (oud’ echomen ouden
para tȏn allȏn),
whether in the way of a statement of difficulties or of a solution (oute proêporêmenon oute proêuporêmenon peri autou).’ (208a32-b1)
Aristotle begins by giving voice to those views that
ascertain the existence of topos as
an entity in its own right: ‘The existence of place (hoti men oun estin ho topos) is held to be obvious (dokei dêlon
einai) from the fact of mutual replacement (ek tês antimetastaseȏs). Where water now is (hopou gar esti nun hudȏr), there in turn, when the water
has gone out as from a vessel, air is present (entautha exelthontos hȏsper
ex angeiou palin aêr
enestin,). When therefore another body occupies this same place (hote de ton auton topon touton allo ti tȏn sȏmatȏn katecheiˑ),
the place is thought to be different from all the bodies which come to be in it
and replace one another (touto dê tȏn
engignomenȏn kai metaballontȏn heteron pantȏn
einai dokeiˑ). What now contains air (en hȏi
gar aêr esti nun,) formerly
contained water (hudȏr en toutȏi
proteron ên), so that clearly the
place or space into which and out of which they passed was something different
from both (hȏste
dêlon hȏs
ên ho topos ti kai hê chȏra
heteron amphoin, eis hên
kai ex hês metebalon).’ (208b1-8)
Identifying topos with chȏra,
and chȏra
with chaos (Liddell and Scott
list ‘space’ as one of the meanings both of chȏra and of chaos), Aristotle refers to Hesiod’s ‘First of all things came
chaos to being’ as ‘implying that things need to have space first (hȏs
deon prȏton huparxai chȏran tois ousi), because he thought
(dia to nomizein), with most people (hȏsper
hoi polloi), that everything is somewhere and in place (panta einai pou kai en topȏi). If this is its nature (ei d’ esti toiouto), the potency of
place must be a marvellous thing (thaumastê tis an eiê
hê tou topou dunamis), and
take precedence of all other things (kai
protera pantȏn). For that without which
nothing else can exist (hou gar aneu tȏn allȏn
ouden estin), while it can exist without the others (ekeino d’ aneu tȏn
allȏn), must needs be first (anankê prȏton
einai); for place does not pass out of existence (ou gar apollutai ho topos) when the
things in it are annihilated (tȏn en autȏi
phtheiromenȏn).’ (208b27-209a2)
To a certain degree, Kant’s view of space chimes with this
“Hesiod’s and most people’s” view of space: ‘We never can imagine or make a
representation to ourselves (Man kann
sich niemals eine Vorstellung davon machen,) of the non-existence of space
(dass kein Raum sei), though we may
easily enough think (ob man sich gleich
ganz wohl denken kann,) that no objects are found in it (dass keine Gegenstände
darin angetroffen werden.). It must, therefore, be considered as the
condition of the possibility of phenomena (Er
wird also als die Bedingung der Möglichkeit
der Erscheinungen,), and by no means as a determination dependent on them (und nicht als eine von ihnen abhängende Bestimmung angesehen,), and
is a representation a priori (und ist eine Vorstellung a priori,),
which necessarily supplies the basis for external phenomena (die notwendigerweise äusseren Erscheinungen zum Grunde
liegt.).’ (B38-39, tr. J. M. D. Meiklejohn)
Both in Kant’s and in “Hesiod’s and most people’s” view,
objects, things, animals and human beings, are located, move or rest in space in
front of us and around us. But for Hesiod and most people this space is real
and the objects in it are real things, whereas for Kant the objects in space
are nothing but sensory presentations (Vorstellungen)
and space itself is nothing but a sensory presentation, an a priori presentation to boot.
Aristotle does not view topos
as an entity without which nothing else can exist, while it can exist without
the others, and so he asks, ‘if it is (ei
esti), what is it (ti esti), is
it some sort of bulk of body (poteron
onkos tis sȏmatos), or is its nature
different (ê tis hetera phusis)? … Now
it has three dimensions (diastêmata oun echei tria), length,
breadth, depth (mêkos
kai platos kai bathos), the dimensions by which all body is bounded (hois horizetai sȏma
pan). But the place cannot be body (adunaton
de sȏma einai ton topon); for
if it were there would be two bodies in the same place (en t’autȏi
gar an eiê duo sȏmata)
… What in the world then are we to suppose place to be (ti gar an pote kai theiêmen
einai ton topon)? If it has the sort of nature described (toiautên
echonta phusin), it cannot be an element or composed of elements (oute gar stoicheion out’ ek stoicheiȏn hoion te einai), whether these
be corporeal or incorporeal (oute tȏn sȏmatikȏn oute tȏn
asȏmatȏn):
for while it has size (megethos men gar
echei), it has not body (sȏma d’ ouden). But the elements of
sensible bodies are bodies (esti de ta
men tȏn aisthêtȏn
stoicheia sȏmata), while nothing that
has size results from a combination of intelligible elements (ek de tȏn
noêtȏn
ouden gignetai megethos) … By asking these questions, then (dia men oun toutȏn),
we must raise the whole problem about place – not only as to what it is, but
even whether there is such a thing (ou
monon ti estin, alla kai ei estin, aporein anankaion).’ (209a2-30)
The difficulties Aristotle raises concerning ‘space’ chime
with the absurdities that Kant ascribes to those, who ascribe to space and time
absolute reality: ‘Those who maintain the absolute reality of time and space (die, so die die absolute Realität des Raumes und der Zeit behaupten,)
… as essentially subsisting (als
subsistierend,) … must find themselves at utter variance with the
principles of experience itself (mit den
Prinzipien der Erfahrung selbst uneinig sein müssen.).
For (Denn,) … they must admit two
self-subsisting nonentities, infinite and eternal (so müssen sie zwei ewige und
unendlich für sich bestehende Undinge
{Raum und Zeit} annehemn,), which exist (welche da sind) (yet without there being anything real {ohne dass doch etwas Wirkliches ist},)
for the purpose of containing in themselves everything that is real (nur um alles Wirkliche in sich zu befassen.).
(B56-57)
Aristotle rejects the view of space as an entity in its own
right as vehemently as Kant does; in the end he defines topos as ‘the boundary (to
peras) of the containing body (tou
periechontos sȏmatos) at which it is in
contact with the contained body (kath’ ho
sunaptei tȏi periechomenȏi’ (212a6). Aristotle explains:
‘We say that a thing is in the world, in the sense of in place (epei de legomen einai hȏs en topȏi
en tȏi ouranȏi), because it is in the air (dioti en tȏi
aeri), and the air is in the world (houtos
de en tȏi ouranȏiˑ); and when we say it is in
the air, we do not mean it is in every part of the air, but that it is in the
air because of the outer surface of the air which surrounds it (kai en tȏi
ouranȏi ouk en panti, alla dia to eschaton autou kai periechon en
tȏi aeri phamen einai); for
if all the air were its place (ei gar pas
ho aêr topos), the place of a
thing would not be equal to the thing (ouk
an isos eiê hekastou ho topos kai
hekaston) – which it is supposed to be (dokei
de ge isos einai,), and which the primary place in which a thing is
actually is (toioutos ho prȏtos en hȏi
estin).’ (211a23-29)
Kant does not refer to Aristotle by name in Section I of his
‘Transcendental Aesthetic’, which is devoted to space, but he undoubtedly views
him as one of those ‘metaphysical natural philosophers’ (metaphysische Naturlehrer), who ‘regard space and time as relations
(contiguity in space or succession in time), abstracted from experience, though
represented confusedly in this state of separation (und Raum und Zeit gelten ihnen als von der Erfahrung abstrahierte, obzwar
in der Absonderung verworren vorgestellte, Verhältnisse
der Erscheinungen {neben oder nacheinander},)’. (B57)
How does Kant view space? In the ‘Transcendental Exposition
of the Conception of Space’ (Transzendentale
Erörterung des Begriffs vom Raume)
he writes: ‘Geometry is a science (Geometrie
ist eine Wissenschaft,) which determines the properties of space
synthetically, and yet a priori (welche die Eigenschaften des Raumes
synthetisch und doch a priori bestimmt.). What, then, must be our
representation of space (Wass muss die
Vorstellung des Raumes denn sein,), in order that such a cognition of it
may be possible (damit eine solche
Erkenntnis von ihm möglich
sei?)? It must be originally intuition (Er
muss ursprünglich Anschauung sein;),
for from a mere conception (denn aus einem
blossen Begriffe), no propositions can be deduced which go out beyond the
conception (lassen sich keine Sätze, die über
den Begriff hinausgehen, ziehen,), and yet this happens in geometry (welches doch in der Geometrie geschieht.).’
(B 40-41)
What does Kant mean when he says that geometry ‘determines
the properties of space synthetically, and yet a priori? To make sense of this point, we must grasp Kant’s
conception of synthetical judgments and of his concept of a priori.
In Sextion IV of his ‘Introduction’ entitled ‘Of the
difference between analytical and synthetical judgments’ (Von dem Unterschiede analytischer und synthetisher Urteile) he
says: ‘In all judgments (In allen
Urteilen,) wherein the relation of a subject to the predicate is cogitated
(worinnen das Verhältnis eines Subjekts zum Prädikat gedacht wird), this relation
is possible in two different ways (ist
dieses Verhältnis auf zweirlei Art möglich.). Either the predicate B
belongs to the subject A (Entweder das Prädikat B gehört
zum Subjekt A), as something (als
etwas,) which is contained (though covertly) in the conception A (was in diesem Begriffe A {verstecktweise}
enthalten ist;); or the predicate B lies completely out of the conception A
(oder B liegt ganz ausser dem Begriff A,),
although it stands in connection with it (ob
es zwar mit demselben in Verknüpfung
steht.). In the first instance (Im
ersten Fall), I term the judgment analytical (nenne ich das Urteil analytisch), in the second, synthetical (in dem andern synthetisch).’ (B 10)
Kant elucidates the analytical judgments by the following
example: ‘When I say (wenn ich sage)
“All bodies are extended (alle Körper sind ausgedehnt),” this is an
analytical judgment (so ist es ein analytisches
Urteil). For I need not go beyond the conception of body (Denn ich darf nicht über
den Begriff, den ich mit dem Körper
verbinde, hinausgehen) in order to find extension connected with it (um die Ausdehnung, als mit demselben verknüpft, zu finden,), but merely
analyse the conception (sondern jenen
Begriff nur zergliedern), that is become conscious of the manifold
properties which I think in that conception (d. i. des Mannigfaltigen, welches ich jederzeit in ihm denke, mir nur
bewusst werden), in order to discover this predicate in it (um dieses Prädikat
darin anzutreffen.).’ (B11)
The synthetical judgments he elucidates as follows: ‘When I
say (wenn ich sage), “All bodies are
heavy (alle Körper
sind schwer,),” the predicate is something totally different (so ist das Prädikat
etwas ganz anderes,) from that (als
das,) which I think in the mere conception of a body (was ich in dem blossen Begriff eines Körpers
überhaupt denke.). By the addition
of such a predicate (Die Hinzufügung eines solchen Prädikats), therefore, it becomes a
synthetical judgment (gibt also ein
synthetisches Urteil.). (B 11) Kant maintains that all judgments of
experience (Erfahrungsurteile) are
synthetical: ‘Though at first I do not at all include the predicate of weight
in my conception of body in general (ob
ich schon in dem Begriff eines Körpers
überhaupt das Prädikat der Schwere gar nicht
einschliesse,), that conception still indicates an object of experience (so bezeichnet jener doch einen Gegenstand
der Erfahrung), a part of the totality of experience (durch einen Teil derselben,),
to which I can still add other parts (zu
welchem ich also noch andere Teile eben derselben Erfahrung, als zu dem
ersteren gehörig, hinzufügen kann) … Thus it is experience (Es ist also die Erfahrung,) upon which
rests the possibility of the synthesis of the predicate of weight with the
conception of body (worauf sich die Möglichkeit der Synthesis des Prädikats der Schwere mit dem Begriffe
des Körpers gründet,), because both conceptions (weil beide Begriffe,), although the one
is not contained in the other (ob zwar
einer nicht in dem anderen erhalten ist,), still belong to one another
(only contingently, however, as parts of a whole, namely, of experience, which
is itself a synthesis of intuitions (dennoch
als Teile eines Ganzen, nämlich
der Erfahrung, die selbst eine synthetische Verbindung der Anschauungen ist,
zueinander, wiewohl nur zufälligerweise,
gehören.).’ (B 11-12)
Kant calls such knowledge a priori, ‘which is independent of experience’ (von der Erfahrung unabhängiges Erkenntnis), in
contradistinction to empirical knowledge, which has its sources a posteriori,
that is, in experience. A priori
propositions are characterized by necessity (Notwendigkeit), and absolute universality (strenge Allgemeinheit); they can be either pure or impure: ‘Pure
knowledge a priori is that with which
no empirical element is mixed up (Von den
Erkenntnissen a priori heissen aber diejenigen rein, denen gar nichts
Empirisches beigemischt ist.). For example, the proposition (So ist z. B. der Satz) “Every change has
a cause” (eine jede Veränderung hat eine Ursache,), is a
proposition a priori (ein Satz a priori,), but impure (allein nicht rein), because change is a
conception (weil Veränderung ein Begriff ist,) which
can only be derived from experience (der nur
aus der Erfahrung gezogen werden kann.).’ (B 3) An example of a synthetic proposition,
which is a priori and pure, Kant
derives from geometry: ‘”A straight line between two points is the shortest,” (Dass die gerade Linie zwischen zwei Punkten
die kürzeste sei,) is a
synthetical proposition (ist ein
synthetischer Satz.). For my conception of straight (Denn mein Begriff von Geradem) contains no notion of quantity (enthält
nichts von Grösse,), but is merely
qualitative (sondern nur eine Qualität.). The conception of the
shortest (Der Begriff des Kürzesten) is therefore wholly an
addition (kommt also gänzlich hinzu,), and by no analysis
can be extracted from our conception of a straight line (und kann durch keine Zergliederung aus dem Begriffe der geraden Linie
gezogen werden.). Intuition must therefore here lend its aid (Anschauung muss also hier zu Hilfe genommen
werden,), by means of which and thus only (vermittels deren allein), our synthesis is possible (die Synthesis möglich
ist).’ (B 16)
The Anschauung
[the expression ‘intuition’ is misleading] that must here ‘lend its aid’ is a
pure, non-empirical Anschauung, which
Kant explains as follows: ‘If I take away from our representation of a body,
all that the understanding thinks as belonging to it, as substance, force,
divisibility, etc., and also whatever belongs to sensation, as impenetrability,
hardness, colour, etc (wenn ich von der
Vorstellung eines Körpers
das, was der Verstand davon denkt, als Substanz, Kraft, Teilbarkeit usw.,
imglewichen was davon zur Empfindung gehȏrt,
als Undurchdringlichkeit, Härte,
Farbe usw. Absondere,); yet there is still something left from this
empirical intuition (so bleibt mir aus
dieser empirischen Anschauung noch etwas übrig,),
namely, extension and shape (nämlich Ausdehnung und Gestalt.).
These belong to pure intuition (Diese gehören zur reinen Anschauung,), which
exists a priori in the mind, as a
mere form of sensibility, and without any real object of the senses or any
sensation (die a priori, auch ohne einen
wirklichen Gegenstand der Sinne oder Empfindung, als eine blosse Form der
Sinnlichkeit im Gemüte
stattfindet.).’ (B 35)
After all these preliminaries, Kant’s ‘Transcendental
Exposition of the Conception of Space’ can be properly understood in all its
significance: ‘Geometry is a science (Geometrie
ist eine Wissenschaft,) which determines the properties of space
synthetically, and yet a priori (welche die Eigenschaften des Raumes
synthetisch und doch a priori bestimmt.). What, then, must be our
representation of space (Wass muss die
Vorstellung des Raumes denn sein,), in order that such a cognition of it
may be possible (damit eine solche
Erkenntnis von ihm möglich
sei?)? It must be originally intuition (Er
muss ursprünglich Anschauung sein;),
for from a mere conception (denn aus
einem blossen Begriffe), no propositions can be deduced which go out beyond
the conception (lassen sich keine Sätze, die über
den Begriff hinausgehen, ziehen,), and yet this happens in geometry (welches doch in der Geometrie geschieht.).
But this intuition must be found in the mind a priori, that is, before any conception of objects (Aber diese Anschauung muss a priori, d. i.
vor aller Wahrnemung eines Gegenstandes, in uns angetroffen werden.),
consequently must be pure, not empirical intutition (mithin reine, nicht empirische Anschauung sein.). For geometrical
principles are always apodictic (Denn die
geometrischen Sätze
sind insgesamt apodiktisch,), that is, united with the consciousness of
their necessity (d. i. mit dem
Bewusstsein ihrer Notwendigkeit verbunden.) … Now, how can an external
intuition anterior to objects themselves, and in which our conception of
objects can be determined a priori, exist
in human mind (Wie kann nun eine äussere Anschauung dem Gemüte beiwohnen, die vor den Objekten
selbst vorhergeht, und in welcher der Begriff der letzteren a priori bestimmt werden
kann?)? Obviously not otherwise (Offenbar
nicht anders,) than in so far as it has its seat in the subject only, as
the formal capacity of the subject’s being affected by objects, and thereby
obtaining immediate representation, that is, intuition (als so fern sie bloss im Subjekte, als die formale Beschaffenheit
desselben, von Objekten affiziert zu werden, und dadurch unmittelbare
Vorstellung derselben d. e. Anschauung zu bekommen, ihren Sitz hat,);
consequently, only as the form of the external sense in general (also nur als Form des äusseren Sinnes überhaupt.).’ (B 40-41)
***
Concerning my remark that the expression ‘intuition’ for
Kant’s Anschauung is misleading. If
we are to grasp Kant’s concept of Anschauung,
we must properly take in Kant’s view that experience in its totality is itself
a synthesis of ‘intuitions’ (eine
synthetische Verbindung der Anschauungen). All sensory perceptions – read
colour of a rose, sharp blade of a knife, a pleasant smell of the dinner on the
table – all these are parts of our empirical ‘intuition’, Anshauung; Kepler’s laws of planetary motion, Newton’s law of
gravity are all a priori
‘intuitions’, though impure, for motion and gravity are notions derived from
experience; Pythagorean theorem – ‘the square of the hypotenuse (the side
opposite to the right angle) is equal to the sum of the squares of the other
two sides’ – is a pure a priori ‘intuition’,
for none of the notions involved in it is derived from experience.
No comments:
Post a Comment